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GREEN'S-FUNCTION METHOD FOR SOLVING PROBLEMS OF NONEQUILIBRIUM 

ADSORPTION AND CONVECTIVE DIFFUSION OF IMPURITY IN A MEDIUM 

Yu. N. Gordeev and N. A. Kudryashov UDC 532,546 

The Green's function method is used to solve problems of impurity transfer by a 
carrier-gas flow in a semiinfinite medium, taking account of convective diffusion, 
nonequilibrium adsorption, and radioactive decay. 

In describing the propagation of adsorbed impurity in a porous medium under the action 
of a carriergas, as a rule, account is taken of longitudinal diffusion and mass transfer 
from a gas flow to the adsorbent granule. The convective-diffusion coefficient depends on 
the velocity of carrier-gas motion and the characteristic dimension of the porous medium 
D = Do + Av [I]. Hence it follows that, for a homogeneous porous medium and a constant gas- 
flow velocity, the convective diffusion coefficient is a constant and does not depend on 
the coordinates and the time. The characteristic length of the porous layer, beginning with 
which convective diffusion significantly influence the impurity characteristics, is determined 
from the estimate l~Dto , although in reality the impurity "front" may be distorted on 
account of diffusional blurring at relatively small distances. 

Impurity adsorption is divided into three stages [2]: external mass transfer, the act of 
adsorption, and internal diffusion in adsorbent grains. The second stage usually occurs 
considerably more rapidly than the other two. 

External mass transfer occurs by molecular diffusion to the surface and mixing of impurity 
in the flow and is characterized by a kinetic adsorption coefficient B, which is related to 
the flow velocity and grain size by the dimensionless equation [2] Nu = ARenpr m. For a 
homogeneous porous medium and at constant gas-flow velocity, the kinetic adsorption coefficient 
will also be constant. 

The adsorption kinetics must be taken into account when t ~ B -~, i.e., when the character- 
istic time of the process is comparable with the inverse of the kinetic coefficient. 

If the characteristic grain size of the porous medium satisfies the condition d ~ /Doto, 
the propagation of adsorbed impurity in the porous medium when d~D~1~ to~<l~D -~ is described 
by the following system of equations 

ut -b at -b vu~ @ ?~ (u @ a) = Duxx, 

a t  -~  ~ (u  - -  u * )  - -  ;~a, u *  - -  va. 

(1) 

(2) 
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In Eqs. (i) and (2), it is taken into account that the impurity being transferred is adsorbed 
according to a linear Henry's law, which is valid with a small impurity concentration in the 
gas flow. In addition, it is assumed that the impurity undergoes radioactive decay. The 
system in Eqs. (i) and (2) is used in describing nonsteady heat transfer by liquid in a motion- 
less granular mass [3]. Its approximate solution by reduction to an evolutionary equation 
was outlined in [4]. 

In [5], it was shown that the boundary condition need only be specified for the function 
u(x, t). The initial and boundary conditions for Eqs. (I) and (2) take the form 

u(x, 0)=~1~) , a~, 0)=~2(x), u(0, t):~(t) .  (3) 

Matching of the initial and boundary conditions was also considered in [6]. The problem 
of impurity propagation by a gas flow was considered in [1-9]. In [6], the influence of non- 
equilibrium adsorption and convective diffusion with constant boundary conditions and zero 
initial conditions -- u(0, t) = i, u(x, 0) = a(x, 0) = 0 -- was investigated. In [7], Eqs. 
(i) and (2) were solved for the case when the impurity concentration reaches the input to 
the mass in the form of a delta function with respect to the time. 

In the present work, the solution of Eqs. (i) and (12) with initial and boundary condi- 
tions of the general type in Eq. (3) is obtained in quadratures. 

To determine the impurity concentration u(x, t), which is a solution of Eqs, (i) and (2) 
with the conditions in Eq. (3), use is made of the Green's-function method, which is well 
known for equations of hyperbolic and parabolic type [i0, ii], i.e., the solution of the 
system is sought in the form of integrals of the initial and boundary problems 

u(x, t)= ~(x; t--T)~(T)dT+ ~ ai(x--~; l)~i(~)d~. (4) 
0 i = 1  0 

Here the functions Gi(x, ~; t) (i = i, 2) are components of the Green's tensor [II] corre- 
sponding to the function u(x, t) of the boundary problem in Eqs. (1)-(3) for a rectilinear 
halfline. Essentially, the function GiCx , $; t) for fixed i coincides with the solution of 
Eqs. (i) and (2) u(x, t) with specially chosen initial and boundary conditions 

u(x, 0)=6(x--~) ,  a(x, 0)=0,  u(0, t )=0,  i =  1, (5) 

u(x, 0 )=0 ,  a(x, 0)=6(x--~),  u(0, t )=0,  i = 2 .  (6) 

It may be shown that the function ~(x, t) is obtained from Q (x, ~; t) by the following 
transition to the limit 

qO(x,_t)=D lira 0 G~(x, ~; t). 
~o 0~ 

(7) 

The function ~(x, t) is often called the response function of the medium. Its analytical 
form was obtained in [7]. 

With known ~(x, t), Gi(x, ~; t) (i = i, 2), the solution for Eqs. (i) and (2) with con- 
ditions of the arbitrary type in Eq. (3) is reduced to calculating the single integrals in 
Eq. (4). This calculation may be performed with approximate analytical or numerical methods 
using standard integral-calculation programs. 

First, an auxiliary problem is solved. The component of the Green's-tensor component 
H,(x, ~; t) corresponding to the solution of the Cauchy problem of Eqs. (I) and (2) under 
the following conditions is determined 

u(x, O)=a~- -~ ) ,  a(x, 0)=0,  - - o o < x < ~ ,  t>~O. (8) 

Applying a Laplacian transformation with respect to the time and a Fourier transforma- 
tion with respect to the coordinate to Eqs. (i) and (2) and the condition in Eq. (8), the 
function 

(~, p) ~ (2~) -I/2 f dt ~ dxu (x, t) exp {-- pt-- i~x} U 
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is found in the form 

U (m, p) =: @ (2a) -1/2 i (~  @ 4Dq (p))-~ 72 [(m + i%)- ~-- ( m +  i%)-*l exp {--  imP}. (9) 

Here 

(01,2 = (2D) -* [v +_ (v" q- 4Dq (p))~/2]; q (p) = (p q_ ;~) [ 1 -k [3 (pq- s +[~?)-~-1- 

Using back-transformation and the generalized Efros tensor [12] to find the function 
corresponding to the transform in Eq. (9), the component of the Green's tensor H,(x, g; t) 
of Eqs. (i) and (2) with the conditions in Eq. (8) is obtained 

t 

H~ (x, ~; t) = (4riD0 -~/2 exp {-- ),2} IS (x, ~; l) + [3 (?/)'/2.f A t (t, x )  S (x, ~; "0 d~], 
0 

S(x,  ~; t )=  e x p { - - ( x - - ~ - -  vt) 2 (4D0-~--[~t}, Al(t ,  ,c)= 

= (l - -  1:) - I /2  11 [2t3 ~/~ (t - -  ~) ] exp {-- ,3 7 (t -- ~)}. 

(io) 

Here !~(z) is a Bessel function of the first kind with an imaginary argument. 

Since u(x, t) = H~(x, 6; t) with the conditions in Eq. (8) and u(x, t) = exp{--2~v(2D)-l} - 
H~(x, --~; t) is also a solution of Eqs. (i) and (2) with the initial conditions 

u(x, 0 ) = e x p { - - 2 B v ( 2 D )  -1} a ( x + B ) ,  a (x ,  0 ) = 0 ,  - - o o < x < o o ,  

t>/0, 

it follows that 

G, (x, .~; t) = H~ (x, ~; t ) - -  exp {--  2~v (2D) -~} HI  (x, - -  ~; t). (ii) 

The function GI(x, 6; t) satisfies Eqs. (i) and (2) with the initial and boundary condi- 
tions in Eq. ( 5 ) .  

The function ~(x, t) is found from the expression for the transition to the limit in Eq. 
(7); it may expediently be written as the sum of two terms 

qb (.v, t) = x(4aDta) -1/2 exp{- -~ l}  [q51 (x, 0 + q~= (x, t)], 

~ (x, 0 = exp {--  At - -  (x - -  vt) 2 (4D0-*}, (12) 

l 

qs=(x, l)=- B~., ''-~ I a/2 i' d**--~( t - z ) - : / 2  i112~ v"Y'c (t - -  *) l exp{--[3y(g---r'~} q51(x , ~). 
b 

Analogously to G1(x, 6; t), the Green's-tensor component Ga(x, ~; t)of Eqs. (I) and 
(2) on a rectilinear halfline under the condition in Eq. (6) is determined 

where 

G= (.v, ~; t) = H., (.~, ~; t) - -  exp {--  2~ (20) -~ v} H2 (x, - -  ~; t)), 

~5"orv, ~; t) .... ;4Da ',--~/~ [}l, exp {--  ),,t} i A2(t, T) S(x, ~; ~)d*;  
0 

(13) 

A2 (i, z) = T-"/=' Io 21~ ]Sy;(([----$) ] exp {--  ~y (t - -  ~}. 

Using Eqs. (4) and (11)-(13), the solution of Eqs. (i) and (2) with the arbitrary initial 
and boundary conditions in Eq. (3) may be found. 
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Suppose that the impurity-concentration distribution in the flow and porous medium 
initially is a rectangular pulse 

u (0, t) = 0, u (x, 0) = ~,c [0  (x) - -  O (l - -  x)l,  a (x, 0) = c [0  (x) - -  0 (l - -  x)i.  (14) 

The significance of Eq. (14) is that in some volume of the porous medium there is equil- 
ibrium between the impurity in the flow and in the adsorbent according to Henry's law, and 
when t > 0 carrier-gas motion at constant velocity v begins. 

Using the Green's-tensor components in Eqs. (ii) and (13), the solution of Eqs. (I) and 
(2) with the condition in Eq. (14) is obtained from Eq. (4) 

u (x, t) = c? (4~Dt) -1/2 [Ql (X, t) exp {-- (~ + ~) t} + ~t l/2exp {-- (~--~?) t}] 

where 

2 2 - i  t 
• ~ ?--g- f [ 'd-i(t--~)i-2]l/2 12-~ [2~] / "~( t - -T) ]  Ol(x, x) 

j= ~ "~ 
exp {-- (1 -- ?~ 13~} d~, 

Qz(x, t ) =  ~ 1  (4aDt) ~/2 {erf[(x - -v t )  (4Dt)-l/21~ - -  

(15) 

(16) 

-- err [(x - -  l - -  vt) (4Dt)-~121 - -  exp {vxD -~} [err Ix + l 4- vt) (4Dt) -1/21 - -  err [(x -6 v0 (4Dt)-'/2]l}. 

Here erf(z) is the probability integral. 

As Z + =, which corresponds to the case of a uniform initial concentration distribution -- 
u(x, 0), a(x, 0) -- it is found that 

u ( 0 ,  t ) = 0 ,  a ( x ,  0 ) = c ,  u ( x ,  0 ) = V c ,  x > / 0 .  

Then Eq. (16) is written in the form 

(17) 

lira Qz(x, t) = 1 (4aDt) 1/2 {1 + erf[(x--vt)  (4Dt)-1/21 - -  exp{v::D -~} erfc[(x-t- vt) (4Dt)-~/21}. 

Here eric(z) = i -- erf(z). 

Consider the limiting cases of equilibrium (B + ~) and strongly nonequilibrium adsorption 
(Sy*':t << I). 

If the characteristic time for the establishment of equilibrium between the radioactive 
impurity in the flow and in the adsorbent is much less than the characteristic time of the 
process, adsorption occurs "instantaneously." As 8 + m, Eq. (2) transforms to the equation 
u = ya. As ~ + ~, the solution in Eq. (15) takes the form 

u(x, t) = c(4~Dt) -~/2 ~?,/2 (1 -t-?)~/2 Qz(x ' ~,(1 -t-',')-~ t) exp{--~t}. ( i s )  

For (17) the solution of (18) has the form 

u(x, t) . . . .  1 c ? e x p { - - ) ~ t }  {1 q- e r f [ ( x - -  vt~) ( 4 D t 0 - L / 2 I  ( 1 9 )  
2 

--exp {vxD -t} erfc [(x + vtL) (4Dq) -I/21}, 

where t, = y(l + y) -I 

At fixed i, the solution in Eq. 

t) 0 to lira u(x, l )=c?exp{- -~d}  
x ~  
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(19) increases monotonically with x(u x > O) from lim it(x, 

The coordinate x ..~ v[ when vt >> (4Dr) ~/2 is a point of 



~5 

Fig. i. Impurity concentration 
in gas-carrier flow u(x, t) for 
t = I0, 40, 70, and 90 sec (curves 
1-4, respectively) when v = 2 
cm/sec, D = 4"10 -~ m/sec, X = 
2.78.10 -5 sec -~, y = 0.5, c = I/y. 

inflection of the function u(x, t). The solution in Eq. (19) at different moments of time is 
shown in Fig. i. 

For strongly nonequilibrium adsorption (By~/=t << i), asymptoic expansion of the Bessel 
function at small values of the argument is used. The solution u(x, t) takes the form 

z~(x, t) -- c(4~Dt) -1 / z  [Qz(x, t) exp{--(~ § L) t} § ~?t ~/'2 .( dTz -1/2 (~T + 1) Q~(x, T) exp{--(1--?) ~}1. (20) 
0 

The integrand in Eq. (20) is continuous; therefore according to the theorem of the mean 

u(x, t)--c(4;~Dt)-~/z[Og(x, t) exp{--(~+)~) t} +~7ta"'-l~(~6+ 1)Qz(x, tO exp {-- (1-- ?) ~q}l, (21) 

where it@(0, t) The solution in Eq. (21) is the sum of two terms; the first corresponds to 
the solution of the diffusion equation in a moving medium; the second is due to desorption of 
impurity from the medium. As I § ~ when vt >> (4Dr)~2 , each of the terms in Eq. (21) is of 
qualitatively the same form as a function of x as in the case of equilibrium adosrption, i.e., 
in Eq. (18). 

When B m t~ ~ (the case of weakly nonequilibrium adsorption), the asymptotic solution of 
Eqs. (I) and (2) constructed using the Green's-function method coincides with the solution 
obtained by the method proposed in [4]. 

NOTATION 

Do, molecular-diffusion coefficient; 4, constant of dimensionality length characterizing 
the geometry of the porous layer; to, characteristic sorption time; u*, concentration of 
sorbed material at equilibrium; A, n, m, constants; Nu, Re, Pr, Nusselt, Reynolds, and Prandtl 
numbers; u(x, t), concentration of radioactive impurity in gas flow; a(x, t), amount of ad- 
sorbed impurity per unit volume of porous medium; ~, kinematic mass-transfer coefficient; v~ 
carrier-gas velocity; %, radioactive decay constant; y, inverse of Henry coefficient; D, 
longitudinal diffusion coefficient; c, l, parameters in initial conditions; @(x) , Heaviside 
function; Hi(x , ~; t)~ Gi(x, ~; t), Green's tensor components on a straight line and a recti- 
linear halfline. 
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